Инвертор 12V/220V вещь на хозяйстве нужная. Иногда просто необходимая: сеть, допустим, пропала, а телефон разряжен и в холодильнике мясо. Спрос определяет предложение: за готовые модели на 1кВт и более, от которых можно запитывать любые электроприборы, придется выложить где-то от $150. Возможно, более $300. Однако сделать преобразователь напряжения своими руками в наше время дело доступное каждому, кто умеет паять: собрать его из готового набора компонент обойдется втрое-вчетверо дешевле + немного работы и металла из подручного хлама. Если есть зарядное устройство для автомобильных аккумуляторных батарей (АКБ), можно уложиться вообще в 300-500 руб. А если имеются еще и начальные радиолюбительские навыки, то, порывшись в загашниках, вполне возможно сделать инвертор 12V DC/220V AC 50Hz на 500-1200 Вт вовсе даром. Рассмотрим возможные варианты.
Варианты: глобально
Преобразователь напряжения 12-220 В для питания нагрузки до 1000 Вт и более в целом можно сделать самостоятельно такими способами (в порядке повышения затрат):
- Оформить в корпус с теплоотводом готовый блок с Avito, Ebay или AliExpress. Ищется по запросу «inverter 220» или «inverter 12/220»; можно сразу добавить требуемую мощность. Обойдется прим. вдвое дешевле такого же заводского. Электротехнических навыков не нужно, но – см. ниже;
- Собрать такой же из набора: печатная плата + «россыпь» компонент. Приобретается там же, но к запросу добавляется diy, что значит под самосборку. Цена еще прим. в 1,5 раза ниже. Нужны начальные навыки в радиоэлектронике: умение паять пользоваться мультиметром, знание разводок (распиновок) выводов активных элементов или умение их искать, правил включения в схему полярных компонент (диодов, электролитических конденсаторов) и умение определять, на какой ток какого сечения нужны провода;
- Приспособить под инвертор компьютерный источник бесперебойного питания (ИБП, UPS). Исправный ИБП б/у без штатной АКБ можно найти за 300-500 руб. Навыков не нужно никаких – к ИБП просто подключается авто АКБ. Но заряжать ее придется отдельно, также см. ниже;
- Выбрать способ преобразования, схему (см. далее) сообразно своим потребностям и наличию деталей, рассчитать и собрать полностью самостоятельно. Возможно совсем даром, но кроме начальных электронных навыков понадобится умение пользоваться некоторыми специальными измерительными приборами (тоже см. далее) и производить простейшие инженерные расчеты.
Из готового модуля
Способы сборки по пп. 1 и 2 на самом деле не такие уж простые. Корпуса готовых заводских инверторов служат одновременно и теплоотводами для мощных транзисторных ключей внутри. Если брать «полуфабрикат» или «россыпь», то корпуса к ним не будет: при теперешней себестоимости электроники, ручного труда и цветных металлов разница в ценах объясняется как раз отсутствием второго и, возможно, третьего. Т.е., радиатор для мощных ключей придется делать самому или искать готовый алюминиевый. Его толщина в месте установки ключей должна быть от 4 мм, а площади на каждый ключ должно приходиться от 50 кв. см. на каждый кВт отдаваемой мощности; с обдувом от компьютерного вентилятора-кулера на 12 В 110-130 мА – от 30 кв. см*кВт*ключ.
Готовые модули инверторов напряжения 12/220 В
Напр., в наборе (модуле) 2 ключа (их видно, они торчат из платы, см. слева на рис.); модули с ключами на радиаторе (справа на рис.) стоят дороже и рассчитаны на определенную, как правило, не очень большую мощность. Кулера нет, мощность нужна 1,5 кВт. Значит, нужен радиатор от 150 кв. см. Кроме него еще установочные комплекты для ключей: изолирующие теплопроводящие прокладки и фурнитура под крепежные винты – изолирующие чашечки и шайбы. Если модуль с теплозащитой (между ключами будет торчать еще какая-то фитюлька — термодатчик), то немного термопасты для приклеивания его к радиатору. Провода – само собой, см. далее.
Из ИБП (UPS)
Инвертор 12В DC/220 В AC 50 Гц, к которому можно подключать любые приборы в пределах допустимой мощности, делается из компьютерного ИБП совсем просто: штатные провода к «своей» АКБ заменяются длинными с зажимами под клеммы авто АКБ. Сечение проводов рассчитывается исходя из допустимой плотности тока 20-25 А/кв. мм, см. также далее. Но вот из-за нештатной батареи могут возникнуть проблемы – с нею же, а она дороже и нужнее преобразователя.
В ИБП применяются тоже свинцово-кислотные АКБ. Это на сегодня единственно широко доступный вторичный химический источник электропитания, способный регулярно отдавать большие токи (экстратоки), не «убиваясь» полностью за 10-15 циклов заряд-разряд. В авиации используются серебряно-цинковые АКБ, которые еще мощнее, но они чудовищно дороги, в широкий оборот не выпускаются, а их ресурс по бытовым меркам ничтожен – ок. 150 циклов.
Разряд кислотных АКБ четко отслеживается по напряжению на банку, и контроллер ИБП не даст «чужой» батарее разрядиться сверх меры. Но в штатных АКБ ИБП электролит гелевый, а в автоаккумуляторах жидкий. Режимы заряда в том и другом случае существенно отличаются: сквозь гель нельзя пропускать такие токи, как сквозь жидкость, а в жидком электролите при слишком малом токе заряда подвижность ионов будем мала и они не все вернутся на свои места в электродах. В результате ИБП будет хронически недозаряжать авто АКБ, она скоро засульфатируется и придет в полную негодность. Поэтому в комплект к инвертору на ИБП нужно зарядное устройство для аккумуляторов. Сделать его своими руками можно, но это уже другая тема.
Батарея и мощность
От АКБ зависит и пригодность преобразователя для той или иной цели. Повышающий инвертор напряжения не берет энергию для потребителей из «темной материи» Вселенной, черных дыр, духа святого или откуда-то еще просто так. Только – из АКБ. А от нее он возьмет мощность, отдаваемую потребителям, деленную на КПД самого преобразователя.
Если вы увидите на корпусе фирменного инвертора «6800W» или более – верьте глазам своим. Современная электроника позволяет поместить в объеме сигаретной пачки устройства и помощнее. Но, допустим, нам нужна мощность в нагрузке 1000 Вт, а в распоряжении есть обычный автоаккумулятор на 12 В 60 А/ч. Типовое значение КПД инвертора – 0,8. Значит, от батареи он возьмет ок. 100 А. На такой ток нужны и провода сечением от 5 кв. мм (см. выше), но не это тут главное.
Автолюбители знают: гонял стартер 20 мин – покупай новый аккумулятор. Правда, в новых машинах есть ограничители времени его работы, так что, возможно, и не знают. И точно не все знают, что стартер легковушки, раскрутившись, берет ток ок. 75 А (в течение 0,1-0,2 с при запуске – до 600 А). Простейший расчет – и выходит, что, если в инверторе нет автоматики, ограничивающей разряд батареи, то наша за 15 мин сядет полностью. Так что выбирайте или конструируйте свой преобразователь с учетом возможностей наличной АКБ.
Примечание: из этого следует огромное преимущество преобразователей 12/220 в на основе компьютерных ИБП – их контроллер не даст полностью посадить батарею.
Ресурс кислотных АКБ заметно не уменьшается, если они разряжаются 2-х часовым током (12 А для 60 А/ч, 24 А для 120 А/ч и 42 А для 210 А/ч). С учетом КПД преобразования это дает допустимую долговременную мощность нагрузки в прим. 120 Вт, 230 Вт и 400 Вт соотв. Для 10 мин. нагрузки (напр., для запитки электроинструмента) она может быть увеличена в 2,5 раза, но после этого АБК должна отдохнуть не менее 20 мин.
В целом итог получается не совсем уж плохой. Из обычного бытового электроинструмента только болгарка может брать 1000-1300 Вт. Остальные, как правило, обходятся мощностью до 400 Вт, а шуруповерты до 250 Вт. Холодильник от АКБ 12 В 60 А/ч через инвертор проработает 1,5-5 час; вполне достаточно, чтобы принять необходимые меры. Поэтому делать преобразователь на 1кВт для батареи 60 А/ч смысл имеет.
Что будет на выходе?
Преобразователи напряжения ради уменьшения массогабаритов устройства за редкими исключениями (см. далее) работают на повышенных частотах от сотен Гц до единиц и десятков кГц. Ток такой частоты не примет никакой потребитель, а потери его энергии в обычной проводке будут огромны. Поэтому инверторы 12-200 строятся под выходное напряжение след. видов:
- Постоянное выпрямленное 220 В (220V AC). Пригодны для питания телефонных зарядок, большинства источников питания (ИП) планшетов, ламп накаливания, люминесцентных экономок и светодиодных. На мощность от 150-250 Вт отлично подойдут для ручного электроинструмента: потребляемая им мощность на постоянном токе немного снижается, а крутящий момент возрастает. Непригодны для импульсных блоков питания (ИБП) телевизоров, компьютеров, ноутбуков, микроволновок и т.п. мощностью более 40-50 Вт: в таких обязательно есть т. наз. пусковой узел, для нормальной работы которого сетевое напряжение должно периодически проходить через ноль. Непригодны и опасны для приборов с силовыми трансформаторами на железе и электромоторами переменного тока: стационарного электроинструмента, холодильников, кондиционеров, большей части Hi-Fi аудио, кухонных комбайнов, некоторых пылесосов, кофеварок, кофемолок и микроволновок (для последних – из-за наличия мотора вращения стола).
- Модифицированное синусоидальное (см. далее) – пригодны для любых потребителей, кроме Hi-Fi аудио с ИБП, прочих устройств с ИБП от 40-50 Вт (см. выше) и, часто локальных охранных систем, домашних метеостанций и т.п. с чувствительными аналоговыми датчиками.
- Чистое синусоидальное – пригодны без ограничений, кроме как по мощности, для любых потребителей электроэнергии.
Синус или псевдосинус?
С целью повышения экономичности преобразование напряжения осуществляется не только на повышенных частотах, но и разнополярными импульсами. Однако запитывать очень многие приборы-потребители последовательностью разнополярных прямоугольных импульсов (т. наз. меандром) нельзя: большие выбросы на фронтах меандра при хоть чуть-чуть реактивной нагрузке приведут к большим потерям энергии и могут вызвать неисправность потребителя. Однако проектировать преобразователь на синусодальный ток тоже нельзя – КПД не превысит прим. 0,6.
Преобразование постоянного напряжения в модифицированную и чистую синусоиду
Тихая, но существенная в данной отрасли революция произошла, когда специально для инверторов напряжения были разработаны микросхемы, формирующие т. наз. модифицированную синусоиду (слева на рис.), хотя правильнее было бы назвать ее псевдо-, мета-, квази- и т.п. синусоидой. Форма тока модифицированной синусоиды ступенчатая, а фронты импульсов затянуты (фронтов меандра на экране электронно-лучевого осциллографа часто вообще не видно). Благодаря этому потребители с трансформаторами на железе или заметной реактивностью (асинхронными электромоторами) «понимают» псевдосинусоиду «как настоящую» и работают как ни в чем не бывало; Hi-Fi аудио с сетевым трансформатором на железе запитывать модифицированной синусоидой можно. Кроме того, модифицированную синусоиду возможно достаточно простыми способами сгладить до «почти настоящей», отличия которой от чистой на осциллографе на глаз еле заметны; преобразователи типа «Чистый синус» стоят ненамного дороже обычных, справа на рис.
Однако приборы с капризными аналоговыми узлами и ИБП запускать от модифицированной синусоиды нежелательно. Последние – крайне нежелательно. Дело в том, что средняя площадка модифицированной синусоиды не чистый ноль напряжения. Узел запуска ИБП от модифицированной синусоиды срабатывает нечетко и весь ИБП может не выйти из режима запуска в рабочий. Пользователь это видит сначала как безобразные глюки, а потом из девайса идет дым, как в анекдоте. Поэтому приборы в ИБП нужно запитывать от инверторов типа Чистый Синус.
Делаем инвертор сами
Итак, пока ясно, что лучше всего делать инвертор на выход в 220 В 50 Гц, хотя и о выходе AC мы тоже еще вспомним. В первом случае для контроля частоты понадобится частотомер: нормы на колебания частоты сети электропитания – 48-53 Гц. Особенно чувствительны к ее отклонениям электромоторы переменного тока: при выходе частоты питающего напряжения до пределы допуска они греются и «уходят» от номинальных оборотов. Последнее очень опасно для холодильников и кондиционеров, могут неустранимо выйти из строя вследствие разгерметизации. Но покупать, арендовать или выпрашивать на время точный и многофункциональный электронный частотомер нет нужны – нам его точность ни к чему. Вполне подойдет или электромеханический резонансный частотомер (поз. 1 на рис.), или стрелочный любой системы, поз. 2:
Приборы для контроля частоты сети электропитания
Стоят тот и другой недорого, продаются в интернете, а в больших городах в электротехнических спецмагазинах. Старый резонансный частотомер можно найти на на железном базаре, а тот или другой после наладки инвертора очень даже подойдут для контроля частоты сети в доме – счетчик на подключение их к сети не реагирует.
50 Гц от компьютера
В большинстве случаев питание 220 В 50 Гц требуется потребителям не особо мощным, до 250-350 Вт. Тогда основой преобразователя 12/220 В 50 Гц может послужить ИБП от старого компьютера – если, конечно, такой валяется в хламе или кто-то продает по дешевке. Отдаваемая в нагрузку мощность будет прим. 0,7 от номинальной ИБП. Напр., если на его корпусе значится «250W», то приборы до 150-170 Вт можно подключать безбоязненно. Нужно больше – надо сначала проверить на нагрузке из ламп накаливания. Выдержал 2 часа – такую мощность способен отдавать и долговременно. Как сделать инвертор 12V DC/220V AC 50Hz из компьютерного блока питания, см. видео ниже.
Видео: простой преобразователь 12-220 из компьютерного БП
Ключи
Допустим, компьютерного ИБП нет или нужна мощность побольше. Тогда важное значение приобретает выбор ключевых элементов: они должны коммутировать большие токи с наименьшими потерями на переключение, быть надежными и доступными по цене. В этом отношении биполярные транзисторы и тиристоры в данной сфере применения уверенно уходят в прошлое.
Вторая революция в инверторном деле связана с появлением мощных полевых транзисторов («полевиков») т. наз. вертикальной структуры. Впрочем, они перевернули всю технику электропитания маломощных устройств: найти в «бытовухе» трансформатор на железе становится все труднее.
Лучшие из мощных полевиков для преобразователей напряжения – с изолированным затвором и индуцированным каналом (MOSFET), напр. IFR3205, слева на рис.:
Мощные транзисторы для преобразователей напряжения
Благодаря ничтожной мощности переключения КПД инвертора с выходом DC на таких транзисторах может достигать 0,95, а с выходом AC 50 Гц 0,85-0,87. Аналоги MOSFET со встроенным каналом, напр. IFRZ44, дают КПД пониже, но стоят гораздо дешевле. Пара тех или других позволяет довести мощность в нагрузке до прим. 600 Вт; те и другие без проблем запараллеливаются (справа на рис.), что позволяет строить инверторы на мощность до 3 кВт.
Примечание: мощность потерь переключения ключей со встроенным каналом при работе на существенно реактивную нагрузку (напр., асинхронный электродвигатель) может достигать 1,5 Вт на ключ. Ключи с индуцированным каналом от этого недостатка свободны.
TL494
Третий элемент, который позволил довести преобразователи напряжения до теперешнего состояния – специализированная микросхема TL494 и ее аналоги. Все они представляют собой контроллер широтно-импульсной модуляции (ШИМ), формирующий на выходах сигнал модифицированной синусоиды. Выходы разнополярные, что позволяет управлять парами ключей. Опорная частота преобразования задается одной RC цепью, параметры которой можно менять в широких пределах.
Когда хватит постоянки
Круг потребителей тока 220 В DC ограничен, но как раз у них потребность в автономном электропитании возникает не только в аварийных ситуациях. Напр., при работе электроинструментом на выезде либо в дальнем углу своего же участка. Или присутствует всегда, скажем, у дежурного освещения входа в дом, прихожей, коридора, придомовой территории от солнечной батареи, днем подзаряжающей АКБ. Третий типичный случай – зарядка телефона на ходу от прикуривателя. Здесь мощность на выходе нужна совсем маленькая, так что инвертор может быть выполнен всего на 1 транзисторе по схеме релаксационного генератора, см. след. ролик.
Видео: повышающий преобразователь на одном транзисторе
Уже для питания 2-3 светодиодных лампочек нужна мощность побольше. КПД блокинг-генераторов при попытке «выжать» ее резко падает, и приходится переходить на схемы с отдельными времязадающими элементами или полной внутренней индуктивной обратной связью, они наиболее экономичны и содержат наименьшее количество компонент. В первом случае для коммутации одного ключа используется ЭДС самоиндукции одной из обмоток трансформатора совместно с времязадающей цепью. Во втором частотозадающим элементом является сам повышающий трансформатор за счет его собственной постоянной времени; ее величина определяется преимущественно явлением самоиндукции. Поэтому те и другие инверторы иногда называют преобразователями на самоиндукции. Их КПД, как правило, не выше 0,6-0,65, но, во-первых, схема проста и наладки не требует. Во-вторых, напряжение на выходе скорее трапецеидальное, чем меандр; «требовательные» потребители «понимают» его как модифицированную синусоиду. Недостаток – полевые ключи в таких преобразователях практически неприменимы, т.к. часто выходят из строя от бросков напряжения на первичной обмотке при коммутации.
Пример схемы с внешними времязадающими элементами дан на поз. 1 рис.:
Схемы простых преобразователей напряжения 12-200 В
Ошибочно выбранный магнитопровод трансформатора маломощного преобразователя напряжения
Автору конструкции не удалось выжать из нее более 11 Вт, но судя по всему, он перепутал феррит с карбонильным железом. Во всяком случае, броневой (чашечный) магнитопровод на его же фото (см. рис. справа) никак не ферритовый. Больше он похож на старый карбонильный, окислившийся снаружи от времени, см. рис. справа. Трансформатор для этого инвертора лучше намотать на ферритовом кольце с площадью сечения по ферриту 0,7-1,2 кв. см. Первичная обмотка тогда должна содержать 7 витков провода диаметром по меди 0,6-0,8 мм, а вторичная 57-58 витков провода 0,3-0,32 мм. Это под выпрямление с удвоением, см. далее. Под «чистые» 220 В – 230-235 витков провода 0,2-0,25. В таком случае этот инвертор при замене КТ814 на КТ818 отдаст мощность до 25-30 Вт, чего достаточно для 3-4 светодиодных ламп. При замене КТ814 на КТ626 мощность в нагрузке будет ок. 15 Вт, но КПД повысится. В обоих случаях радиатор ключа – от 50 кв. см.
На поз. 2 дана схема «допотопного» преобразователя 12-220 с отдельными обмотками обратной связи. Не такая уж она архаичная. Во-первых, выходное напряжение под нагрузкой – трапеция с округленными переломами без выбросов. Это даже лучше, чем модифицированная синусоида. Во-вторых, этот преобразователь может быть без каких-либо переделок в схеме выполнен на мощность до 300-350 Вт и частоту 50 Гц, тогда выпрямитель не нужен, надо только поставить VT1 и VT2 на радиаторы от 250 кв. см. каждый. В-третьих, он бережет АКБ: при перегрузке частота преобразования падает, отдаваемая мощность уменьшается, а если нагрузить еще больше, генерация срывается. Т.е., чтобы избежать переразряда батареи, не требуется никакой автоматики.
Порядок расчета данного инвертора дан в скане на рис.:
Ключевые величины в нем – частота преобразования и рабочая индукция в магнитопроводе. Частоту преобразования выбирают исходя из материала наличного сердечника и требуемой мощности:
Тип
магнитопровода |
Индукция/частота преобразования | |||
---|---|---|---|---|
До 50 Вт | 50-100 Вт | 100-200 Вт | 200-350 Вт | |
«Силовое» железо от трансформаторов питания толщиной 0,35-0,6 мм | 0,5 Тл/(50-1000)Гц | 0,55 Тл/(50-400)Гц | 0,6 Тл/(50-150)Гц | 0,7 Тл/(50-60)Гц |
«Звуковое» железо от выходных трансформаторов УМЗЧ толщиной 0,2-0,25 мм | 0,4 Тл/(1000-3000)Гц | 0,35 Тл/(1000-2000)Гц | — | — |
«Сигнальное» железо от сигнальных трансформаторов толщиной 0,06-0,15 мм (не пермаллой!) | 0,3 Тл/(2000-8000)Гц | 0,25 Тл/(2000-5000)Гц | — | — |
Феррит | 0,15 Тл/(5-30)кГц | 0,15 Тл/(5-30)кГц | 0,15 Тл/(5-30)кГц | 0,15 Тл/(5-30)кГц |
Такая «всеядность» феррита объясняется тем, что петля его гистерезиса прямоугольная и рабочая индукция равна индукции насыщения. Уменьшение по сравнению с типовыми расчетных значений индукции в стальных магнитопроводах вызвано резким ростом потерь на коммутацию несинусоидальных токов при ее возрастании. Поэтому с сердечника силового трансформатора старого телевизора-«гроба» на 270 Вт в этом преобразователе на 50 Гц удастся снять не более 100-120 Вт. Но – на безрыбье и рак рыба.
Примечание: если в наличии есть стальной магнитопровод заведомо завышенного сечения, не выжимайте из него мощность! Пусть лучше индукция будет меньше – КПД преобразователя возрастет, а форма выходного напряжения улучшится.
Выпрямление
Выпрямлять выходное напряжение этих инверторов лучше по схеме с параллельным удвоением напряжения (поз. 3 на рис. со схемами): компоненты для нее обойдутся дешевле, а потери мощности на несинусоидальном токе будут меньше, чем в мостовой. Конденсаторы нужно брать «силовые», рассчитанные на большую реактивную мощность (с обозначениями PE или W). Если поставить «звуковые» без этих букв, они могут просто взорваться.
50 гц? Это очень просто!
Простой инвертор на 50 Гц (поз. 4 рис. выше со схемами) интересная конструкция. У некоторых видов типовых трансформаторов питания собственная постоянная времени близка к 10 мс, т.е. половине периода 50 Гц. Подкорректировав ее времязадающими резисторами, которые будут одновременно и ограничителями тока управления ключей, можно получить на выходе сразу сглаженный меандр 50 Гц без сложных схем формирования. Подойдут трансформаторы ТП, ТПП, ТН на 50-120 Вт, но не всякие. Возможно, придется изменить номиналы резисторов и/или включить параллельно им конденсаторы на 1-22 нФ. Если частота преобразования все равно далеко от 50 Гц, разбирать и перематывать трансформатор бесполезно: склеенный ферромагнитным клеем магнитопровод распушится, и параметры трансформатора резко ухудшатся.
Этот инвертор – дачный преобразователь выходного дня. Аккумулятор машины он не посадит по тем же причинам, что и предыдущий. Но его хватит на освещение домика с верандой светодиодными лампами и телевизор или вибрационный насос в скважине. Частота преобразования налаженного инвертора при изменениях тока нагрузки от 0 до максимального не выходит за пределы технормы для сетей электропитания.
Разводят обмотки исходного трансформатора так. В типовых трансформаторах питания по четному числу вторичных обмоток на 12 или 6 В. Две из них «откладываются», а остальные распаиваются параллельно в группы из равного числа обмоток в каждой. Далее группы соединяются последовательно так, чтобы получились 2 полуобмотки на 12 В каждая, это будет низковольная (первичная) обмотка со средней точкой. Из оставшихся низковольных обмоток одна соединяется последовательно с сетевой на 220 В, это будет повышающая обмотка. Добавка к ней нужна, т.к. падение напряжения на ключах из биполярных составных транзисторах совместно с его потерями в трансформаторе может достигать 2,5-3 В, и выходное напряжение окажется заниженным. Дополнительная обмотка доведет его до нормы.
DC от микросхемы
КПД описанных преобразователей не превышает 0,8, а частота в зависимости от тока нагрузки заметно плавает. Предельная мощность нагрузки менее 400 Вт, так что пришла пора вспомнить о современных схемных решениях.
Схема простого преобразователя 12 В DC/ 220 В DC на 500-600 Вт дана на рис.:
Схема преобразователя 12-220 В DC 1000 Вт
Основное его назначение – питание ручного электроинструмента. К качеству подводимого напряжения такая нагрузка не требовательна, поэтому ключи взяты подешевле; подойдут также IFRZ46, 48. Трансформатор мотается на феррите сечением 2-2,5 кв. см; подойдет сердечник силового трансформатора от компьютерного ИБП. Первичная обмотка – 2х5 витков жгута из 5-6 обмоточных проводов диаметром по меди 0,7-0,8 мм (см. ниже); вторичная – 80 витков такого же провода. Налаживание не требуется, но контроля разряда батареи нет, так что в процессе работы нужно прицепить к ее клеммам мультиметр и не забывать на него поглядывать (то же касается и всех прочих самодельных инверторов напряжения). Если напряжение упало до 10,8 В (1,8 В на банку) – стоп, выключаемся! Упало до1,75 В на банку (10,5 В вся батарея) – это уже пошла сульфатация!
Как мотать трансформатор на кольце
На качественные характеристики инвертора, в частности, на его КПД, довольно сильно влияет поле рассеяния его трансформатора. Принципиальное решение для его уменьшения давно известно: первичную обмотку, «накачивающую» магнитопровод энергией, размещают вплотную к нему; вторичные над ней по убыванию их мощности. Но техника такое дело, что теоретические принципы в конкретных конструкциях иной раз приходится выворачивать наизнанку. Один из законов Мэрфи гласит прим. так: если железка ну вот все равно не хочет работать как надо, попробуй сделать в ней все наоборот. В полной мере это относится к трансформатору повышенной частоты на ферритовом кольцевом магнитопроводе с обмотками из относительно толстого жесткого провода. Мотают трансформатор преобразователя напряжения на ферритовом кольце так:
- Изолируют магнитопровод и с помощью намоточного челнока наматывают на него вторичную повышающую обмотку, укладывая витки как можно плотнее, поз. 1 на рис.:
Намотка трансформатора преобрзователя напряжения на ферритовом кольце
- Плотно обтягивают «вторичку» скотчем, поз 2.
- Готовят 2 одинаковых жгута проводов для первичной обмотки: наматывают количество витков половины низковольтной обмотки тонким негодным проводом, снимают его, замеряют длину, отрезают нужное количество отрезков обмоточного провода с запасом и собирают их в жгуты.
- Дополнительно изолируют вторичную обмотку до получения относительно ровной поверхности.
- Мотают «первичку» 2-мя жгутами сразу, располагая провода жгутов лентой и равномерно распределяя витки по сердечнику, поз. 3.
- Вызванивают концы жгутов и соединяют начало одного с концом другого, это будет средняя точка обмотки.
Примечание: на электрических принципиальных схемах начала обмоток, если это имеет значение, обозначаются точкой.
50 Гц сглаженные
Модифицированная синусоида от ШИМ-контроллера не единственный способ получить на выходе инвертора 50 Гц, пригодные для подключения любых бытовых потребителей электричества, да и ту не мешало бы еще «пригладить». Простейший из них – старый добрый трансформатор на железе, он хорошо «гладит» за счет своей электрической инерции. Правда, найти магнитопровод на более чем 500 Вт становится все труднее. Включается такой разделительный трансформатор на низковольный выход инвертора, а к его повышающей обмотке подключается нагрузка. По этой схеме, кстати, построено большинство компьютерных ИБП, так что они для такой цели вполне подходят. Если же мотать трансформатор самому, то рассчитывается он аналогично силовому, но со след. особенностями:
- Первоначально определенная величина рабочей индукции делится на 1,1 и применяется во всех дальнейших расчетах. Так нужно, чтобы учесть т. наз. коэффициент формы несинусоидального напряжения Кф; у синусоиды Кф=1.
- Повышающая обмотка рассчитывается сначала как сетевая на 220 В для заданной мощности (или определенной по параметрам магнитопровода и величине рабочей индукции). Затем найденное количество ее витков умножается на 1,08 для мощности до 150 Вт, на 1,05 для мощностей 150-400 Вт и на 1,02 для мощностей 400-1300 Вт.
- Половина низковольтной обмотки рассчитывается как вторичная на напряжение 14,5 В под ключи биполярные или со встроенным каналом и на 13,2 В для ключей с индуцированным каналом.
Примеры схемных решений преобразователей 12-200 В 50 Гц с разделительным трансформатором даны на рис.:
Схемы преобразователей напряжения 12-220 В 50 Гц на 500-1000 Вт
На той, что слева, ключами управляет задающий генератор на т. наз. «мягком» мультивибраторе, он уже генерирует меандр в заваленными фронтами и сглаженными переломами, так что дополнительных мер сглаживания не требуется. Нестабильность частоты мягкого мультивибратора выше, чем обычного, поэтому для ее подстройки нужен потенциометр P. С ключами на КТ827 можно снять мощность до 200 Вт (радиаторы – от 200 кв. см без обдува). Ключи на КП904 из старого хлама или IRFZ44 позволяют увеличить ее до 350 Вт; одинарные на IRF3205 до 600 Вт, а спаренные на них же до 1000 Вт.
Инвертор 12-220 В 50 Гц с задающим генератором на TL494 (справа на рис.) частоту держит железно во всех мыслимых немыслимых условиях эксплуатации. Для более эффективного сглаживания псевдосинусоиды используется явление т. наз. безразличного резонанса, при котором фазовые соотношения токов и напряжений в колебательном контуре становятся такими же, как при остром резонансе, но их амплитуды заметно не увеличиваются. Технически это решается просто: к повышающей обмотке подключают сглаживающий конденсатор, значение емкости которого подбирают по наилучшей форме тока (не напряжения!) под нагрузкой. Для контроля формы тока в цепь нагрузки на мощность 0,03-0,1 от номинальной включают резистор на 0,1-0,5 Ом, к которому и подключают осциллограф с закрытым входом. Сглаживающая емкость не уменьшает КПД инвертора, но пользоваться для настройки компьютерными программами симуляции НЧ осциллографа нельзя, т.к. вход звуковой карты, которая в них используется, не рассчитан на амплитуду в 220х1,4 = 310 В! Ключи и мощности такие же, как в пред. случае.
Более совершенная схема преобразователя 12-200 В 50 Гц дана на рис.:
Схема усовершенствованногопреобразователя 12-200 В 50 Гц
В ней используются сложные составные ключи. Для улучшения качества выходного напряжения в ней используется тот факт, что эмиттер планарно-эпитаксиальных биполярных транзисторов легирован много сильнее базы и коллектора. Когда TL494 подаст закрывающий потенциал, напр., на базу VT3, ток его коллектора прекратится, но за счет рассасывания объемного заряда эмиттера он замедлит запирание T1 и выбросы напряжения от ЭДС самоиндукции Tr поглотятся цепями L1 и R11C5; они же больше «наклонят» фронты. Выходная мощность инвертора определяется габаритной мощностью Tr, но не более 600 Вт, т.к. использовать в данной схеме парные мощные ключи нельзя – разброс величины заряда затвора MOSFET транзисторов довольно значительный и переключение ключей будет нечетким, отчего форма выходного напряжения может даже ухудшиться.
Дроссель L1 это 5-6 витков провода диаметром от 2,4 мм по меди, намотанных на отрезок ферритового стержня диаметром 8-10 м и длиной 30-40 мм с шагом 3,5-4 мм. Магнитопровод дросселя не должен быть замкнут! Налаживание схемы дело довольно кропотливое и требующее немалого опыта: нужно подобрать L1, R11 и C5 по наилучшей форме выходного тока под нагрузкой, как в пред. случае. Зато и Hi-Fi, запитанное от этого преобразователя, остается «хайфаем» на самый взыскательный слух.
А нельзя ли без трансформатора?
Уже обмоточный провод для мощного трансформатора на 50 Гц влетит в копеечку. Более-менее доступны магнитопроводы от «гробовых» трансформаторов до 270 Вт габаритных, но в инверторе из такого более 120-150 Вт не выжмешь, а КПД будет в лучшем случае 0,7, т.к. «гробовые» магнитопроводы навиты из толстой ленты, потери на вихревые токи в которой при несинусоилальном напряжении на обмотках большие. Найти магнитопровод ШЛ из тонкой ленты, способный отдать более 350 Вт при индукции 0,7 Тл вообще проблематично, обойдется он дорого, а весь преобразователь получится огромным и неподъемным. Трансформаторы ИБП не рассчитаны на частую работу в длительном режиме – они греются и магнитопроводы их в инверторах довольно скоро деградируют – магнитные свойства сильно ухудшаются, мощность преобразователя падает. Есть ли выход?
Да, и такое решение нередко применяется в фирменных преобразователях. Это – электрический мост из ключей на высоковольтных силовых полевых транзисторах с напряжением пробоя от 400 В и током стока более 5 А. Подойдут из первичных цепей компьютерных ИБП, а из старого хлама – КП904 и т.п.
Мост запитывается постоянкой 220 В DC от несложного инвертора 12-220 с выпрямлением. Плечи моста открываются парами наперекрест поочередно, и ток в нагрузке, включенной в диагональ моста, меняет направление; цепи управления всех ключей гальванически разделены. В промышленных конструкциях ключи управляются от спец. ИМС с развязкой оптопарами, но в любительских условиях то и другое можно заменить дополнительным маломощным инвертором 12 В DC – 12 В 50 Гц, работающим на маленький трансформатор на железе, см. рис. Магнитопровод для него можно взять от китайского базарного маломощного трансформатора питания. За счет его электрической инерции качество выходного напряжения получается даже лучше, чем модифицированная синусоида.
Схема получения 220 В 50 Гц от преобразователя напряжения без мощного трансформатора на железе